Using parallel embedded systems these days is increasing. They are getting more complex due to integrating multiple functionalities in one application or running numerous ones concurrently. This concerns a wide range of applications, including streaming applications, commonly used in embedded systems. These applications must implement adaptable and reliable algorithms to deliver the required performance under varying circumstances (e.g., running applications on the platform, input data, platform variety, etc.). Given the complexity of streaming applications, target systems, and adaptivity requirements, designing such systems with traditional programming models is daunting. This is why model-based strategies with an appropriate Model of Computation (MoC) have long been studied for embedded system design. This work provides algorithmic adaptivity on top of parallelism for dynamic dataflow to express larger sets of variants. We present a multi-Alternative Process Network (mAPN), a high-level abstract representation in which several variants of the same application coexist in the same graph expressing different implementations. We introduce mAPN properties and its formalism to describe various local implementation alternatives. Furthermore, mAPNs are enriched with metadata to Provide the alternatives with quantitative annotations in terms of a specific metric. To help the user analyze the rich space of variants, we propose a methodology to extract feasible variants under user and hardware constraints. At the core of the methodology is an algorithm for computing global metrics of an execution of different alternatives from a compact mAPN specification. We validate our approach by exploring several possible variants created for the Automatic Subtitling Application (ASA) on two hardware platforms.


翻译:使用平行嵌入系统这些天正在增加。 由于将多种功能纳入一个应用程序或同时运行多个应用程序,这些系统变得日益复杂。这涉及到广泛的应用,包括嵌入系统中常用的流应用。这些应用必须采用适应性和可靠的算法,在不同情况下(例如,在平台上运行应用程序、输入数据、平台多样性等)交付所要求的业绩。鉴于流应用的复杂性、目标系统以及适应性要求,用传统编程模型设计这种系统非常艰巨。这就是为什么长期研究嵌入系统设计中采用适当的计算模型(MOC)的基于自动战略。这项工作为动态数据流的平行应用提供了逻辑上的适应性,以显示更多变量。我们提出了一个多替代程序网络(mAPN),一个高层次的抽象代表,同一应用程序的若干变式在显示不同执行的图表中同时存在。我们引入了 mAPN性质及其形式来描述各种本地执行备选方案。此外,对于以数字为基础,在两种变式的变量上提供量化说明。我们用数字来分析一个可变式的硬度方法,用一个可变式的系统来分析一个可变式的硬度的方法。 。我们用数字模型来分析一个可变式的硬化的计算方法,用来分析一个可变式计算。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月6日
VIP会员
相关VIP内容
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员