This paper focuses on how to approximate traveling wave solutions for various kinds of partial differential equations via artificial neural networks. A traveling wave solution is hard to obtain with traditional numerical methods when the corresponding wave speed is unknown in advance. We propose a novel method to approximate both the traveling wave solution and the unknown wave speed via a neural network and an additional free parameter. We proved that under a mild assumption, the neural network solution converges to the analytic solution and the free parameter accurately approximates the wave speed as the corresponding loss tends to zero for the Keller-Segel equation. We also demonstrate in the experiments that reducing loss through training assures an accurate approximation of the traveling wave solution and the wave speed for the Keller-Segel equation, the Allen-Cahn model with relaxation, and the Lotka-Volterra competition model.
翻译:本文侧重于如何通过人工神经网络为各种局部差异方程式对移动波的解决方案进行估计。 当相应的波速事先未知时, 流动波的解决方案很难以传统的数字方法获得。 我们提出了一个新颖的方法来通过神经网络和额外的自由参数来估计流动波的解决方案和未知的波速。 我们证明,在一种温和的假设下,神经网的解决方案与分析式解决方案相融合,自由参数精确地接近波速,因为Keller-Segel方程式的相应损失往往为零。 我们还在实验中表明,通过培训减少损失可以保证移动波的解决方案和Keller-Segel方程式、放松的Allen-Cahn 模型和Lotka-Volterra竞争模型的波速的准确近似值。