Identifying disease-associated changes in DNA methylation can help to gain a better understanding of disease etiology. Bisulfite sequencing technology allows the generation of methylation profiles at single base of DNA. We previously developed a method for estimating smooth covariate effects and identifying differentially methylated regions (DMRs) from bisulfite sequencing data, which copes with experimental errors and variable read depths; this method utilizes the binomial distribution to characterize the variability in the methylated counts. However, bisulfite sequencing data frequently include low-count integers and can exhibit over or under dispersion relative to the binomial distribution. We present a substantial improvement to our previous work by proposing a quasi-likelihood-based regional testing approach which accounts for multiplicative and additive sources of dispersion. We demonstrate the theoretical properties of the resulting tests, as well as their marginal and conditional interpretations. Simulations show that the proposed method provides correct inference for smooth covariate effects and captures the major methylation patterns with excellent power.


翻译:确定DNA甲基化中与疾病有关的变化有助于更好地了解疾病病因病因学。二硫硫酸测序技术允许在DNA的单一基点上生成甲基化剖面。我们以前开发了一种方法,用于估计顺常共变效应,并查明来自双硫酸测序数据的有差异的甲基区域(DMRs),该方法可应对实验错误和可变阅读深度;这种方法利用二亚酸盐分布来说明甲基计数的变异性。然而,双硫酸盐测序数据通常包括低计数整数,并能够显示相对于二亚基分布的超值或分散度。我们提出了一种以准相似性为基础的区域测试方法,其中考虑到多种复制和添加的分散源,从而大大改进了我们以前的工作。我们展示了由此产生的测试的理论性质及其边际和有条件的解读。模拟表明,拟议方法为平稳共变数效应提供了正确的推断,并用极强力捕捉取主要甲基化模式。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【经典书】C语言傻瓜式入门(第二版),411页pdf
专知会员服务
51+阅读 · 2020年8月16日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
已删除
将门创投
5+阅读 · 2019年8月19日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月15日
Arxiv
0+阅读 · 2021年3月11日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【经典书】C语言傻瓜式入门(第二版),411页pdf
专知会员服务
51+阅读 · 2020年8月16日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
已删除
将门创投
5+阅读 · 2019年8月19日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员