For the discretisation of $H_{div}$-functions on rectangular meshes there are at least three families of elements, namely Raviart-Thomas-, Brezzi-Douglas-Marini- and Arnold-Boffi-Falk-elements. In order to prove convergence of a numerical method using them, sharp interpolation error estimates are important. We provide them here in an anisotropic setting for the $H_{div}$-norm.
翻译:对于矩形贝壳上的美元分解功能而言,至少有三个元素组,即Raviart-Thomas-、Brezzi-Douglas-Marini-和Arnold-Boffi-Falk-elements。为了证明使用这些元素的数值方法的趋同,精确的内插误差估计很重要。我们在此提供用于 $H ⁇ div $-norm 的厌异环境。