Gaussian processes are ubiquitous in machine learning, statistics, and applied mathematics. They provide a flexible modelling framework for approximating functions, whilst simultaneously quantifying uncertainty. However, this is only true when the model is well-specified, which is often not the case in practice. In this paper, we study the properties of Gaussian process means when the smoothness of the model and the likelihood function are misspecified. In this setting, an important theoretical question of practial relevance is how accurate the Gaussian process approximations will be given the difficulty of the problem, our model and the extent of the misspecification. The answer to this problem is particularly useful since it can inform our choice of model and experimental design. In particular, we describe how the experimental design and choice of kernel and kernel hyperparameters can be adapted to alleviate model misspecification.


翻译:Gausian 进程在机器学习、统计和应用数学中无处不在。 它们为接近功能提供了一个灵活的建模框架, 同时对不确定性进行量化。 但是, 只有当模型非常具体时, 这一点才是真实的, 而实际上通常并非如此 。 在本文中, 我们研究Gausian 进程的性质意味着当模型的平滑和和可能性函数被错误描述时, 我们研究高斯进程的性质。 在这个环境中, 一个重要的理论相关性问题是, 高斯 进程近似会如何准确地面对问题的困难、 我们的模型和错误区分的程度。 这个问题的答案特别有用, 因为它可以指导我们对模型和实验设计的选择 。 特别是, 我们描述如何调整实验性设计和选择内核和内核超直径计来减轻模型的错误区分 。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
GSMA:人工智能赋能安全应用案例集,114页pdf
专知会员服务
67+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【PKDD2020教程】可解释人工智能XAI:算法到应用,200页ppt
专知会员服务
100+阅读 · 2020年10月13日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月7日
Arxiv
0+阅读 · 2021年7月7日
Arxiv
0+阅读 · 2021年7月6日
Arxiv
0+阅读 · 2021年7月6日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关VIP内容
GSMA:人工智能赋能安全应用案例集,114页pdf
专知会员服务
67+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【PKDD2020教程】可解释人工智能XAI:算法到应用,200页ppt
专知会员服务
100+阅读 · 2020年10月13日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员