On-the-job learning consists in continuously learning while being used in production, in an open environment, meaning that the system has to deal on its own with situations and elements never seen before. The kind of systems that seem to be especially adapted to on-the-job learning are dialogue systems, since they can take advantage of their interactions with users to collect feedback to adapt and improve their components over time. Some dialogue systems performing on-the-job learning have been built and evaluated but no general methodology has yet been defined. Thus in this paper, we propose a first general methodology for evaluating on-the-job learning dialogue systems. We also describe a task-oriented dialogue system which improves on-the-job its natural language component through its user interactions. We finally evaluate our system with the described methodology.


翻译:在职学习包括不断学习,同时在公开的环境下进行生产,这意味着系统必须自己处理以前从未见过的情况和要素。似乎特别适合在职学习的系统是对话系统,因为他们可以利用与用户的互动来收集反馈,以适应和随着时间的推移改进其组成部分。一些进行在职学习的对话系统已经建立和评估,但尚未界定一般方法。因此,我们在本文件中提出了评价在职学习对话系统的第一个一般方法。我们还描述了一个面向任务的对话系统,通过用户的互动改进了在职的自然语言组成部分。我们最后用所述方法评估了我们的系统。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
6+阅读 · 2018年11月1日
Arxiv
6+阅读 · 2018年3月28日
Arxiv
8+阅读 · 2018年2月23日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员