The Sinc-Nystr\"{o}m method is a high-order numerical method based on Sinc basis functions for discretizing evolutionary differential equations in time. But in this method we have to solve all the time steps in one-shot (i.e. all-at-once), which results in a large-scale nonsymmetric dense system that is expensive to handle. In this paper, we propose and analyze preconditioner for such dense system arising from both the parabolic and hyperbolic PDEs. The proposed preconditioner is a low-rank perturbation of the original matrix and has two advantages. First, we show that the eigenvalues of the preconditioned system are highly clustered with some uniform bounds which are independent of the mesh parameters. Second, the preconditioner can be used parallel for all the Sinc time points via a block diagonalization procedure. Such a parallel potential owes to the fact that the eigenvector matrix of the diagonalization is well conditioned. In particular, we show that the condition number of the eigenvector matrix only mildly grows as the number of Sinc time points increases, and thus the roundoff error arising from the diagonalization procedure is controllable. The effectiveness of our proposed PinT preconditioners is verified by the observed mesh-independent convergence rates of the preconditioned GMRES in reported numerical examples.


翻译:Sinc- Nystr\" {o}m 方法是一种基于 Sinc 基础功能的高阶数字方法, 用于在时间上分解进化差异方程式。 但是, 在这种方法中, 我们必须用一发( 全部自动) 解决所有时间步骤, 这导致一个大型非对称密度系统, 处理费用昂贵。 在本文中, 我们提议和分析由抛物和双曲 PDE 产生的这种密度系统的先决条件。 提议的先决条件是原始矩阵的低端扰动, 并有两个优点。 首先, 我们显示, 预设的系统的精度值高度集中在某些与网状参数独立的统一界限( 即全自动) 。 其次, 前提条件可以同时使用一个巨大的非对称密度密度系统系统, 并且通过一个街区的对调和双曲调的 PDE 程序。 这种平行的可能性在于, 分解的树枝质矩阵是一个非常严格的条件。 特别是, 我们显示, 原始矩阵的振动性矩阵的状态是高位数, 我们所观察到的硬化前置的硬性模型, 由Sin Pal- rotographal roal roal rotial rotition rocal romin pract pract romin romin romin rout rocal roc rout rout rout rocal rocil roc rout rout ro ro ro ro ro rout ro ro rocil ro ro rout roc rout rout roc ro ro ro ro ro ro ro ro ro ro roc ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
42+阅读 · 2021年4月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【资源】文本风格迁移相关资源汇总
专知
13+阅读 · 2020年7月11日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月31日
VIP会员
相关资讯
【资源】文本风格迁移相关资源汇总
专知
13+阅读 · 2020年7月11日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员