Person Re-Identification (Re-ID) aims to search for a person of interest (query) in a network of cameras. In the classic Re-ID setting the query is sought in a gallery containing properly cropped images of entire bodies. Recently, the live Re-ID setting was introduced to represent the practical application context of Re-ID better. It consists in searching for the query in short videos, containing whole scene frames. The initial live Re-ID baseline used a pedestrian detector to build a large search gallery and a classic Re-ID model to find the query in the gallery. However, the galleries generated were too large and contained low-quality images, which decreased the live Re-ID performance. Here, we present a new live Re-ID approach called TrADe, to generate lower high-quality galleries. TrADe first uses a Tracking algorithm to identify sequences of images of the same individual in the gallery. Following, an Anomaly Detection model is used to select a single good representative of each tracklet. TrADe is validated on the live Re-ID version of the PRID-2011 dataset and shows significant improvements over the baseline.
翻译:个人重新识别( Re-ID) 的目的是在相机网络中寻找感兴趣的人( 询问) 。 在经典的重新识别设置中, 查询是在包含整具尸体的正确裁剪图像的画廊中寻找的。 最近, 实时重新识别设置被引入来更好地代表重新识别的实际应用环境。 它包括在短视频中搜索查询, 包含整个场景框 。 初始实时重新识别基线使用行人探测器在画廊中建立一个大型搜索席和一个经典的重新识别模型来查找查询。 但是, 生成的画廊太大, 含有低质量图像, 降低了实时再识别性能。 在此, 我们展示了名为 TrADe 的新的实时再识别方法, 以生成更低质量的画廊。 TrADe 首先使用跟踪算法来识别同一个人在画廊中的图像序列 。 随后, 使用异常探测模型来选择每个音轨的单一好代表 。 TRADe 将在 PRID- 2011 数据集的实时再识别版本上验证, 并显示基线上的显著改进 。