We introduce a general approach to characterize composite fading models based on inverse gamma (IG) shadowing. We first determine to what extent the IG distribution is an adequate choice for modeling shadow fading, by means of a comprehensive test with field measurements and other distributions conventionally used for this purpose. Then, we prove that the probability density function and cumulative distribution function of any IG-based composite fading model are directly expressed in terms of a Laplace-domain statistic of the underlying fast fading model and, in some relevant cases, as a mixture of wellknown state-of-the-art distributions. Also, exact and asymptotic expressions for the outage probability are provided, which are valid for any choice of baseline fading distribution. Finally, we exemplify our approach by presenting several application examples for IG-based composite fading models, for which their statistical characterization is directly obtained in a simple form.


翻译:我们采用一种基于反伽马(IG)阴影的复合淡化模型特征的一般方法。我们首先确定IG分布在多大程度上是模拟影子淡化的适当选择,方法是对常规用于此目的的实地测量和其他分布进行综合测试。然后,我们证明任何基于IG的复合淡化模型的概率密度函数和累积分布函数直接表现为基础快速淡化模型的Laplace-Domain统计,在某些相关情况下,作为已知最新分布的混合体。此外,还提供了异常概率的精确和无症状的表达方式,这些表达方式对于基准淡化分布的任何选择都是有效的。最后,我们举例说明了我们的方法,为基于IG的复合淡化模型提供了几个应用实例,其统计特征直接以简单的形式获得。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【MIT干货书】机器学习算法视角,126页pdf
专知会员服务
77+阅读 · 2021年1月25日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】贝叶斯推断随机过程,449页pdf
专知会员服务
150+阅读 · 2020年8月27日
专知会员服务
60+阅读 · 2020年3月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月3日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【MIT干货书】机器学习算法视角,126页pdf
专知会员服务
77+阅读 · 2021年1月25日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】贝叶斯推断随机过程,449页pdf
专知会员服务
150+阅读 · 2020年8月27日
专知会员服务
60+阅读 · 2020年3月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员