A convex geometry is finite zero-closed closure system that satisfies the anti-exchange property. Complexity results are given for two open problems related to representations of convex geometries using implication bases. In particular, the problem of optimizing an implication basis for a convex geometry is shown to be NP-hard by establishing a reduction from the minimum cardinality generator problem for general closure systems. Furthermore, even the problem of deciding whether an implication basis defines a convex geometry is shown to be co-NP-complete by a reduction from the Boolean tautology problem.
翻译:组合几何是满足反交换财产条件的有限零封闭封闭系统;对于与使用隐含基数表示相近的组合几何有关的两个尚未解决的问题,给出了复杂性的结果;特别是,通过确定一般封闭系统的最低基本生成器问题,优化对组合几何的含意基础的问题被证明是难以解决的;此外,即使确定一个隐含基数是否界定了组合几何的问题,也证明通过减少Boolean语道学问题而共同完成。