Huge overhead of beam training imposes a significant challenge in millimeter-wave (mmWave) wireless communications. To address this issue, in this paper, we propose a wide beam based training approach to calibrate the narrow beam direction according to the channel power leakage. To handle the complex nonlinear properties of the channel power leakage, deep learning is utilized to predict the optimal narrow beam directly. Specifically, three deep learning assisted calibrated beam training schemes are proposed. The first scheme adopts convolution neural network to implement the prediction based on the instantaneous received signals of wide beam training. We also perform the additional narrow beam training based on the predicted probabilities for further beam direction calibrations. The second scheme adopts long-short term memory (LSTM) network for tracking the movement of users and calibrating the beam direction according to the received signals of prior beam training, in order to enhance the robustness to noise. To further reduce the overhead of wide beam training, our third scheme, an adaptive beam training strategy, selects partial wide beams to be trained based on the prior received signals. Two criteria, namely, optimal neighboring criterion and maximum probability criterion, are designed for the selection. Furthermore, to handle mobile scenarios, auxiliary LSTM is introduced to calibrate the directions of the selected wide beams more precisely. Simulation results demonstrate that our proposed schemes achieve significantly higher beamforming gain with smaller beam training overhead compared with the conventional and existing deep-learning based counterparts.


翻译:光束培训的庞大管理费对毫米波(mmWave)无线通信提出了重大挑战。为了解决这个问题,我们在本文件中提议采用一个广梁培训方法,根据频道功率泄漏情况校准窄光束方向。为了处理频道功率泄漏的复杂非线性特性,将利用深层学习直接预测最优窄射线。具体地说,提出了三个深层次学习辅助校准光束培训计划。第一个方案采用同源神经网络,根据即时收到的广波射线培训信号进行预测。我们还根据预测的常规概率进行额外的窄波培训,以进一步进行射线方向校准。第二个方案采用长期短期内存(LSTM)网络,以跟踪用户的移动和根据以前接受的波束训练信号对光线方向进行校准。为了进一步降低广波训练的间接费用,我们的第三个方案是适应性波束培训战略,我们根据以前收到的较高级的学习信号进行更多的窄波束训练。第二个方案采用了长期短期内存(LTM)网络,用来跟踪用户的移动运动运动运动运动方向,而选择最优的模性标准是比标准。 最精确的模级标准是比标准,最精确的模标准是比比标准标准,最精确的比比比标准,比标准是比标准,以现有的标准标准是以现有的标准,比标准,比标准是更精确的模标准,比标准,比标准是比标准,比标准,比标准,比标准,比标准是比标准,比标准,比标准是比标准是比标准,比标准,比标准是比标准是比标准,比标准,比比比比比比比比比标准是更低标准。

0
下载
关闭预览

相关内容

最新《高级算法》Advanced Algorithms,176页pdf
专知会员服务
92+阅读 · 2020年10月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
学会期刊丨《中国人工智能学会通讯》2019年 第9卷 第04期
中国人工智能学会
6+阅读 · 2019年4月30日
学会期刊丨《中国人工智能学会通讯》2019年 第9卷 第02期
中国人工智能学会
7+阅读 · 2019年2月28日
已删除
将门创投
7+阅读 · 2018年8月28日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
BranchOut: Regularization for Online Ensemble Tracking with CNN
统计学习与视觉计算组
9+阅读 · 2017年10月7日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
VIP会员
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
学会期刊丨《中国人工智能学会通讯》2019年 第9卷 第04期
中国人工智能学会
6+阅读 · 2019年4月30日
学会期刊丨《中国人工智能学会通讯》2019年 第9卷 第02期
中国人工智能学会
7+阅读 · 2019年2月28日
已删除
将门创投
7+阅读 · 2018年8月28日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
BranchOut: Regularization for Online Ensemble Tracking with CNN
统计学习与视觉计算组
9+阅读 · 2017年10月7日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员