Every design choice will have different effects on different units. However traditional A/B tests are often underpowered to identify these heterogeneous effects. This is especially true when the set of unit-level attributes is high-dimensional and our priors are weak about which particular covariates are important. However, there are often observational data sets available that are orders of magnitude larger. We propose a method to combine these two data sources to estimate heterogeneous treatment effects. First, we use observational time series data to estimate a mapping from covariates to unit-level effects. These estimates are likely biased but under some conditions the bias preserves unit-level relative rank orderings. If these conditions hold, we only need sufficient experimental data to identify a monotonic, one-dimensional transformation from observationally predicted treatment effects to real treatment effects. This reduces power demands greatly and makes the detection of heterogeneous effects much easier. As an application, we show how our method can be used to improve Facebook page recommendations.
翻译:每个设计选择都会对不同的单位产生不同的影响。 但是传统的 A/B 测试往往没有足够能力来辨别这些不同的效果。 当单位级属性组是高维的,而我们的前身是弱的,对于其中某些特殊共差很重要时,情况尤其如此。 但是,经常有观测数据集,其数量级较大。 我们建议一种方法,将这两个数据源结合起来来估计不同治疗效果。 首先, 我们使用观测时间序列数据来估计从共变到单位级效应的绘图。 这些估计可能存在偏差, 但在某些条件下, 偏差保留单位级相对等级的排序。 如果这些条件保持不变, 我们只需要足够的实验数据来辨别从观测预测的治疗效果到实际治疗效果的单维变化。 这减少了电力需求, 并且使得检测差异效应更加容易。 作为应用, 我们展示了如何使用我们的方法来改进Facebook页面的建议。