Developing applicable clinical machine learning models is a difficult task when the data includes spatial information, for example, radiation dose distributions across adjacent organs at risk. We describe the co-design of a modeling system, DASS, to support the hybrid human-machine development and validation of predictive models for estimating long-term toxicities related to radiotherapy doses in head and neck cancer patients. Developed in collaboration with domain experts in oncology and data mining, DASS incorporates human-in-the-loop visual steering, spatial data, and explainable AI to augment domain knowledge with automatic data mining. We demonstrate DASS with the development of two practical clinical stratification models and report feedback from domain experts. Finally, we describe the design lessons learned from this collaborative experience.
翻译:当数据包含空间信息时,例如相邻风险器官的辐射剂量分布,开发适用的临床机器学习模型变得困难。我们描述了一个建模系统DASS的共同设计,以支持用于估计头颈癌患者放疗剂量相关的长期毒性的预测模型的人机混合式开发和验证。与域专家在肿瘤学和数据挖掘中的合作一起开发DASS,融合了人类环中的可视声导、空间数据和可解释AI,将领域知识与自动数据挖掘相结合。我们用两个实用的临床分层模型展示了DASS,并报告了领域专家的反馈。最后,我们描述了这个协作经验中学到的设计经验教训。