Challenging illumination conditions (low-light, under-exposure and over-exposure) in the real world not only cast an unpleasant visual appearance but also taint the computer vision tasks. After camera captures the raw-RGB data, it renders standard sRGB images with image signal processor (ISP). By decomposing ISP pipeline into local and global image components, we propose a lightweight fast Illumination Adaptive Transformer (IAT) to restore the normal lit sRGB image from either low-light or under/over-exposure conditions. Specifically, IAT uses attention queries to represent and adjust the ISP-related parameters such as colour correction, gamma correction. With only ~90k parameters and ~0.004s processing speed, our IAT consistently achieves superior performance over SOTA on the current benchmark low-light enhancement and exposure correction datasets. Competitive experimental performance also demonstrates that our IAT significantly enhances object detection and semantic segmentation tasks under various light conditions. Training code and pretrained model is available at https://github.com/cuiziteng/Illumination-Adaptive-Transformer.
翻译:在现实世界中挑战性光化条件(低光、接触不足和过度接触)不仅呈现出令人不快的视觉外观,而且玷污计算机视觉任务。在相机捕捉原始RGB数据后,它用图像信号处理器(ISP)来制作标准SRGB图像。通过将ISP管道分解成本地和全球图像元件,我们建议使用一个轻量快速光化适应变异器(IAT)来从低光或超光度/超光化条件下恢复正常的光光 SRGB图像。具体地说,IAT使用关注查询来代表并调整与ISP有关的参数,例如色彩校正、伽马校正。由于只有~90k参数和~0.004的处理速度,我们的IAT在当前的基准低光增强和暴露校正数据集上始终取得优异SOTA的性能。竞争性实验性表现还表明,我们的IAT大大加强了各种光条件下的物体探测和语义分化任务。培训代码和预设型模型可在 https://github.com/cuizengeng/Illuglistration-Traction-Arration-traction-traction-traction。