Kernel PCA is a powerful feature extractor which recently has seen a reformulation in the context of Restricted Kernel Machines (RKMs). These RKMs allow for a representation of kernel PCA in terms of hidden and visible units similar to Restricted Boltzmann Machines. This connection has led to insights on how to use kernel PCA in a generative procedure, called generative kernel PCA. In this paper, the use of generative kernel PCA for exploring latent spaces of datasets is investigated. New points can be generated by gradually moving in the latent space, which allows for an interpretation of the components. Firstly, examples of this feature space exploration on three datasets are shown with one of them leading to an interpretable representation of ECG signals. Afterwards, the use of the tool in combination with novelty detection is shown, where the latent space around novel patterns in the data is explored. This helps in the interpretation of why certain points are considered as novel.


翻译:内核五氯苯甲醚是一种强大的地物提取器,最近在受限制的内核机器(RKMs)方面出现了重新改造,这些中核聚物允许内核五氯苯甲醚以类似于受限制的波尔兹曼机器的隐藏和可见的单元表示,这种联系导致人们深入了解如何在基因化程序中使用内核五氯苯甲醚,称为基因内核五氯苯甲醚。本文调查了利用基因内核五氯苯甲醚探索潜在数据集空间的情况。通过在潜伏空间的逐步移动,可以产生新的点,从而可以解释这些组成部分。首先,在三个数据集上进行这种地心空间探索的例子与其中之一一起,可以解释ECG信号。随后,在探索数据中新模式的潜在空间时,展示了该工具与新发现相结合的用途。这有助于解释某些点为何被视为新颖。

1
下载
关闭预览

相关内容

最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关VIP内容
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员