In this paper, we propose a novel reduced order model (ROM) lengthscale that is constructed by using energy distribution arguments. The new energy-based ROM lengthscale is fundamentally different from the current ROM lengthscales, which are built by using dimensional arguments. To assess the novel, energy-based ROM lengthscale, we compare it with a standard, dimensionality-based ROM lengthscale in two fundamentally different types of models: (i) the mixing-length ROM (ML-ROM), which is a ROM closure model; and (ii) the evolve-filter-relax ROM (EFR-ROM), which is a regularized ROM. We test the four combinations (i.e., ML-ROM and EFR-ROM equipped with the energy-based and dimensionality-based lengthscales) in the numerical simulation of the turbulent channel flow at $Re_{\tau} = 395$. The numerical investigation yields the following conclusions: (i) The new energy-based ROM lengthscale is significantly (almost two orders of magnitude) larger than the standard dimensionality-based ROM lengthscale. As a result, the energy-based lengthscale yields more stable ML-ROMs and EFR-ROMs than the dimensionality-based lengthscale. (ii) The energy-based lengthscale displays the correct asymptotic behavior with respect to the ROM dimension, whereas the dimensionality-based lengthscale does not. (iii) The energy-based lengthscale yields ML-ROMs and (when significant filtering is effected) EFR-ROMs whose parameters are less sensitive (i.e., more robust) than the parameters of the ML-ROMs and EFR-ROMs based on the dimensionality-based lengthscale. The novel energy-based lengthscale could enable the development of better scale-aware ROM strategies for flow-specific applications and is expected to have long term applications in nuclear reactor thermal-hydraulics.
翻译:在本文中,我们提出一个新的降序模型(ROM)长度尺度,该模型使用能源分配参数构建。新的基于能源的增序模型(ROM)长度尺度与使用维度参数构建的当前 ROM长度尺度有根本的不同。为了评估基于能源的新版、基于能源的ROM长度尺度,我们用两种基本不同的模型来比较它的标准、基于维度的ROM长度尺度:(一) 混合长的ROM(ML-ROM),这是一个基于敏感度的关闭模型;(二) 进式-过滤器(EFR-ROM),这是一个正规化的ROM(EF-RO)参数长度尺度,我们测试四个组合(即ML-RO),在以能源为基础的电流流和以维度为基的ERF-ROM(I),在以标准度为基的深度的流序流(IL-RM-RM),在以内,在以稳定度为基的流度的流(以比例的 RM-RM-RM),在以内,在以稳定比例的流值的流值上,在以稳定的流-流的流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流-流