Wang et al. (IEEE Transactions on Information Theory, vol. 62, no. 8, 2016) proposed an explicit construction of an $(n=k+2,k)$ Minimum Storage Regenerating (MSR) code with $2$ parity nodes and subpacketization $2^{k/3}$. The number of helper nodes for this code is $d=k+1=n-1$, and this code has the smallest subpacketization among all the existing explicit constructions of MSR codes with the same $n,k$ and $d$. In this paper, we present a new construction of MSR codes for a wider range of parameters. More precisely, we still fix $d=k+1$, but we allow the code length $n$ to be any integer satisfying $n\ge k+2$. The field size of our code is linear in $n$, and the subpacketization of our code is $2^{n/3}$. This value is slightly larger than the subpacketization of the construction by Wang et al. because their code construction only guarantees optimal repair for all the systematic nodes while our code construction guarantees optimal repair for all nodes.
翻译:Wang et al. (IEEE Information Theory, vol. 62, no.8, 2016) 提议明确构建一个$(n=k+2,k)$的最低存储再生(MSR)代码,该代码使用2美元对等节点和子包装 2 ⁇ k/3美元。 此代码的助手节点数为 $d=k+1=n-1美元, 且该代码的子包装在现有的所有明确构建中是最小的, 其值为1美元、 k美元和 美元。 在本文中, 我们提出了一个用于更广泛参数的新的最低存储再生(MSR) 代码构建。 更确切地说, 我们仍在设置 $d=k+1 $, 但我们允许该代码的长度为 $n\ g+2$ 。 我们代码的实地规模以美元为线性, 而我们代码的子包装为 2 ⁇ / 3美元。 这一值略高于 王等人对建设的子包装, 因为其代码的构建仅保证所有系统节点都保证了最优化的修复。