Recent advances in sensing technologies, wireless communications, and computing paradigms drive the evolution of vehicles in becoming an intelligent and electronic consumer products. This paper investigates enabling digital twins in vehicular edge computing (DT-VEC) via cooperative sensing and uploading, and makes the first attempt to achieve the quality-cost tradeoff in DT-VEC. First, a DT-VEC architecture is presented, where the heterogeneous information can be sensed by vehicles and uploaded to the edge node via vehicle-to-infrastructure (V2I) communications. The digital twins are modeled based on the sensed information, which are utilized to from the logical view to reflect the real-time status of the physical vehicular environment. Second, we derive the cooperative sensing model and the V2I uploading model by considering the timeliness and consistency of digital twins, and the redundancy, sensing cost, and transmission cost. On this basis, a bi-objective problem is formulated to maximize the system quality and minimize the system cost. Third, we propose a solution based on multi-agent multi-objective (MAMO) deep reinforcement learning, where a dueling critic network is proposed to evaluate the agent action based on the value of state and the advantage of action. Finally, we give a comprehensive performance evaluation, demonstrating the superiority of MAMO.


翻译:在遥感技术、无线通信和计算模式方面的最新进步促使车辆演变成为智能和电子消费产品。本文件调查了通过合作遥感和上载在车辆边缘计算(DT-Vec)中使数字双胞胎成为数字双胞胎的情况,首次试图在DT-Vec实现质量成本权衡。首先,提出了DT-Vec结构,其中各种信息可以通过车辆感知,并通过车辆到基础设施(V2I)通信(V2I)上传到边缘节点。数字双胞胎是根据感知信息建模的,从逻辑角度加以利用,以反映实际车辆边缘环境的实时状态。第二,我们通过考虑数字双胞胎的及时性和一致性以及冗余、感测成本和传输成本,来形成合作感知模型和V2I上载模型。在此基础上,形成了一个双重目标问题,以最大限度地提高系统质量和降低系统成本。第三,我们提出了一个基于多试剂多目的(MAMO)深度强化学习的解决方案,从逻辑角度加以利用,以便反映物理空间环境的实时状况。我们提出一个适当的批判性网络在最后展示业绩评估上取得优势。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
166+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
76+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
96+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月16日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员