Revenge is a powerful motivating force reported to underlie the behavior of various solo perpetrators, from school shooters to right wing terrorists. In this paper, we develop an automated methodology for identifying vengeful themes in textual data. Testing the model on four datasets (vengeful texts from social media, school shooters, Right Wing terrorist and Islamic terrorists), we present promising results, even when the methodology is tested on extremely imbalanced datasets. The paper not only presents a simple and powerful methodology that may be used for the screening of solo perpetrators but also validate the simple theoretical model of revenge.
翻译:据报道,复仇是一种强大的激励力量,它支撑了从学校枪手到右翼恐怖分子等各种独行者的行为。在本文中,我们开发了一种自动方法,用以在文本数据中识别报复性主题。测试四个数据集的模型(社交媒体、学校枪手、右翼恐怖分子和伊斯兰恐怖分子的恶作剧文本 ), 我们展示了有希望的结果,即使该方法在极不平衡的数据集中测试了。 该文件不仅提供了可用于筛选独行者的一种简单而有力的方法,而且还验证了简单的报复理论模式。