Four-dimensional weak-constraint variational data assimilation estimates a state given partial noisy observations and dynamical model by minimizing a cost function that takes into account both discrepancy between the state and observations and model error over time. It can be formulated as a Gauss-Newton iteration of an associated least-squares problem. In this paper, we introduce a parameter in front of the observation mismatch and show analytically that this parameter is crucial either for convergence to the true solution when observations are noise-free or for boundness of the error when observations are noisy with bounded observation noise. We also consider joint state-parameter estimation. We illustrated theoretical results with numerical experiments using the Lorenz 63 and Lorenz 96 models.
翻译:四维弱约束变分数据同化是通过最小化一个代价函数,同时考虑状态与观测之间的差异和时间上的模型误差来估计状态的方法。它可以被定义为解决一个相关的最小二乘问题的高斯-牛顿迭代。在本文中,我们在观测误差之前引入了一个参数,并表明这个参数对于噪声-free观测时的真实解的收敛或有噪声时误差的有界性至关重要。我们还考虑了联合状态-参数估计。通过在 Lorenz 63 和 Lorenz 96 模型上进行数值实验,我们展示了理论结果的应用。