With the emerge of the Internet of Things (IoT), localization within indoor environments has become inevitable and has attracted a great deal of attention in recent years. Several efforts have been made to cope with the challenges of accurate positioning systems in the presence of signal interference. In this paper, we propose a novel deep learning approach through Gradient Boosting Enhanced with Step-Wise Feature Augmentation using Artificial Neural Network (AugBoost-ANN) for indoor localization applications as it trains over labeled data. For this purpose, we propose an IoT architecture using a star network topology to collect the Received Signal Strength Indicator (RSSI) of Bluetooth Low Energy (BLE) modules by means of a Raspberry Pi as an Access Point (AP) in an indoor environment. The dataset for the experiments is gathered in the real world in different periods to match the real environments. Next, we address the challenges of the AugBoost-ANN training which augments features in each iteration of making a decision tree using a deep neural network and the transfer learning technique. Experimental results show more than 8\% improvement in terms of accuracy in comparison with the existing gradient boosting and deep learning methods recently proposed in the literature, and our proposed model acquires a mean location accuracy of 0.77 m.


翻译:随着物联网(IoT)的出现,室内环境的本地化成为不可避免,近年来引起了大量注意。在信号干扰的情况下,我们作出了一些努力来应对精确定位系统的挑战。在本文件中,我们提议通过使用人工神经网络(AugBoost-ANNN)在室内本地化应用中利用人工神经网络(AugBoost-ANNN)进行人工本地化培训,通过渐进式推介增强功能增强的渐进式增强功能,在室内本地化应用中采用人工神经网络(AugBoost-ANNN),进行室内本地化应用。为此,我们建议使用恒星网络的地形学来收集蓝牙低能信号强度指标(RSSI)模块,在室内环境中采用“草莓Pi”作为接入点,从而应对准确定位系统的挑战。实验数据集在不同时期收集,以适应真实环境。接下来,我们要应对AugBoost-ANNN培训的挑战,这种培训增强了使用深层神经网络和转移学习技术来做决策树的特征。实验结果显示,从最近获得的精确度上提高了我们提议的模型,在深度学习程度方面的精确度。7 。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
66+阅读 · 2022年4月13日
Arxiv
16+阅读 · 2021年3月2日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Image Segmentation Using Deep Learning: A Survey
Arxiv
45+阅读 · 2020年1月15日
Arxiv
15+阅读 · 2018年6月23日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员