In this paper we analyze the joint rate distortion function (RDF), for a tuple of correlated sources taking values in abstract alphabet spaces (i.e., continuous) subject to two individual distortion criteria. First, we derive structural properties of the realizations of the reproduction Random Variables (RVs), which induce the corresponding optimal test channel distributions of the joint RDF. Second, we consider a tuple of correlated multivariate jointly Gaussian RVs, $X_1 : \Omega \rightarrow {\mathbb R}^{p_1}, X_2 : \Omega \rightarrow {\mathbb R}^{p_2}$ with two square-error fidelity criteria, and we derive additional structural properties of the optimal realizations, and use these to characterize the RDF as a convex optimization problem with respect to the parameters of the realizations. We show that the computation of the joint RDF can be performed by semidefinite programming. Further, we derive closed-form expressions of the joint RDF, such that Gray's [1] lower bounds hold with equality, and verify their consistency with the semidefinite programming computations. We also verify our expressions reproduce the closed-form formula of the joint RDF of scalar-valued RVs (i.e., $p_1=p_2=1$) derived by Xiao and Luo [2].
翻译:在本文中,我们分析联合比率扭曲功能(RDF), 以一组相关来源,在抽象字母空间(即连续)中取值的图普尔(即连续), 并遵循两个单独的扭曲标准。 首先, 我们从复制随机变量(RVs)的实现中产生结构性属性, 从而产生相应的最佳测试频道分布。 其次, 我们考虑一个相关多变量的图普尔, 共同高山RVs, $X_ 1 :\ Omega\rightrow ~mathbbl R ⁇ p_1}, X_ 2 :\ Omega\rightrow ~right_mathbbbr_R ⁇ p_2} $, 以两个正方格忠诚标准产生结构属性。 我们用这些模型来将RDFS描述成一个与实现参数有关的相联的相联式优化问题。 我们显示, 联合RDFS的计算可以通过半确定性2 。 此外, 我们得出了联合的公式的封闭性公式, 也通过我们Gray'r’r_ imal deal comdealalalalalalaldealalalalalalalal 校正 校验了它们的平等, 。