In this paper we analyze the joint rate distortion function (RDF), for a tuple of correlated sources taking values in abstract alphabet spaces (i.e., continuous) subject to two individual distortion criteria. First, we derive structural properties of the realizations of the reproduction Random Variables (RVs), which induce the corresponding optimal test channel distributions of the joint RDF. Second, we consider a tuple of correlated multivariate jointly Gaussian RVs, $X_1 : \Omega \rightarrow {\mathbb R}^{p_1}, X_2 : \Omega \rightarrow {\mathbb R}^{p_2}$ with two square-error fidelity criteria, and we derive additional structural properties of the optimal realizations, and use these to characterize the RDF as a convex optimization problem with respect to the parameters of the realizations. We show that the computation of the joint RDF can be performed by semidefinite programming. Further, we derive closed-form expressions of the joint RDF, such that Gray's [1] lower bounds hold with equality, and verify their consistency with the semidefinite programming computations. We also verify our expressions reproduce the closed-form formula of the joint RDF of scalar-valued RVs (i.e., $p_1=p_2=1$) derived by Xiao and Luo [2].


翻译:在本文中,我们分析联合比率扭曲功能(RDF), 以一组相关来源,在抽象字母空间(即连续)中取值的图普尔(即连续), 并遵循两个单独的扭曲标准。 首先, 我们从复制随机变量(RVs)的实现中产生结构性属性, 从而产生相应的最佳测试频道分布。 其次, 我们考虑一个相关多变量的图普尔, 共同高山RVs, $X_ 1 :\ Omega\rightrow ~mathbbl R ⁇ p_1}, X_ 2 :\ Omega\rightrow ~right_mathbbbr_R ⁇ p_2} $, 以两个正方格忠诚标准产生结构属性。 我们用这些模型来将RDFS描述成一个与实现参数有关的相联的相联式优化问题。 我们显示, 联合RDFS的计算可以通过半确定性2 。 此外, 我们得出了联合的公式的封闭性公式, 也通过我们Gray'r’r_ imal deal comdealalalalalalaldealalalalalalalal 校正 校验了它们的平等, 。

0
下载
关闭预览

相关内容

资源描述框架(英语:Resource Description Framework,缩写为RDF),是万维网联盟(W3C)提出的一组标记语言的技术规范,以便更为丰富地描述和表达网络资源的内容与结构。
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
85+阅读 · 2020年12月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月7日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
85+阅读 · 2020年12月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员