I discuss here three important roles where machine intelligence, brain and behaviour studies together may facilitate criminal law. First, brain imaging analysis and predictive modelling using brain and behaviour data enable mental illness, insanity, and behaviour examination during legal investigations. Second, psychological, psychiatric, and behavioural studies supported by machine learning algorithms may help detect lies, biases, and visits to crime scenes. Third, brain decoding is beginning to uncover one's thoughts and intentions based on functional brain imaging data. Having dispensed with achievements and promises, I examine concerns regarding the accuracy, reliability, and explainability of the brain- and behaviour-based assessments in criminal law, as well as questions regarding data possession, security, privacy, and ethics. Taken together, brain and behaviour decoding in legal exploration and decision-making at present is promising but primitive. The derived evidence is limited and should not be used to generate definitive conclusions, although it can be potentially used in addition, or parallel, to existing evidence. Finally, I suggest that there needs to be (more precise) definitions and regulations regarding when and when not brain and behaviour data can be used in a predictive manner in legal cases.


翻译:我在这里讨论三个重要角色,即机器情报、大脑和行为研究可以共同促进刑法。首先,利用大脑和行为数据进行脑成像分析和预测建模,以便在法律调查期间进行精神疾病、精神失常和行为检查。第二,由机器学习算法支持的心理、精神和行为研究可能有助于发现谎言、偏见和对犯罪现场的访问。第三,大脑解码正在开始根据功能性大脑成像数据发现一个人的想法和意图。在免除了成就和承诺之后,我研究了对刑法中大脑和行为评估的准确性、可靠性和可解释性的关切,以及数据拥有、安全、隐私和道德等问题。在目前的法律探索和决策中将大脑和行为解码在一起是很有希望的,但原始的。所产生的证据是有限的,不应用来得出确定的结论,尽管可以对现有证据加以补充或平行使用。最后,我建议,在法律案件中,需要(更精确的)定义和条例,说明何时和何时可以将大脑和行为数据用于预测性的方式。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Text to Image Generation: Leaving no Language Behind
Arxiv
0+阅读 · 2022年8月19日
Arxiv
22+阅读 · 2021年12月19日
Arxiv
11+阅读 · 2021年12月8日
Arxiv
46+阅读 · 2021年10月4日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员