Two-stage ensemble-based forecasting methods have been studied extensively in the wind power forecasting field. However, deep learning-based wind power forecasting studies have not investigated two aspects. In the first stage, different learning structures considering multiple inputs and multiple outputs have not been discussed. In the second stage, the model extrapolation issue has not been investigated. Therefore, we develop four deep neural networks for the first stage to learn data features considering the input-and-output structure. We then explore the model extrapolation issue in the second stage using different modeling methods. Considering the overfitting issue, we propose a new moving window-based algorithm using a validation set in the first stage to update the training data in both stages with two different moving window processes.Experiments were conducted at three wind farms, and the results demonstrate that the model with single input multiple output structure obtains better forecasting accuracy compared to existing models. In addition, the ridge regression method results in a better ensemble model that can further improve forecasting accuracy compared to existing machine learning methods. Finally, the proposed two-stage forecasting algorithm can generate more accurate and stable results than existing algorithms.


翻译:在风能预报领域广泛研究了基于双阶段的共性预报方法,但深层次的基于学习的风能预测研究没有调查两个方面。在第一阶段,没有讨论考虑多种投入和多种产出的不同学习结构。在第二阶段,模型外推问题没有调查。因此,我们为第一阶段开发了四个深层神经网络,以学习考虑到投入和产出结构的数据特征。然后,我们利用不同的模型方法探索第二阶段的模型外推问题。考虑到过于适合的问题,我们建议采用一个新的基于窗口的计算法,在第一阶段使用一个验证器更新两个不同移动窗口过程的培训数据。在三个风力场进行了实验,结果显示,与现有模型相比,具有单一投入的多输出结构的模型的预测准确性更高。此外,山脊回归法的结果是,一个更好的元素模型,可以比现有的机器学习方法进一步提高预测准确性。最后,拟议的两阶段预测算法可以比现有的算法更准确和稳定。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
102+阅读 · 2020年7月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
已删除
将门创投
3+阅读 · 2017年10月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
15+阅读 · 2021年2月19日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
已删除
将门创投
3+阅读 · 2017年10月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员