We consider the problem of estimating the density of a random variable $X$ that can be sampled exactly by Monte Carlo (MC). We investigate the effectiveness of replacing MC by randomized quasi Monte Carlo (RQMC) or by stratified sampling over the unit cube, to reduce the integrated variance (IV) and the mean integrated square error (MISE) for kernel density estimators. We show theoretically and empirically that the RQMC and stratified estimators can achieve substantial reductions of the IV and the MISE, and even faster convergence rates than MC in some situations, while leaving the bias unchanged. We also show that the variance bounds obtained via a traditional Koksma-Hlawka-type inequality for RQMC are much too loose to be useful when the dimension of the problem exceeds a few units. We describe an alternative way to estimate the IV, a good bandwidth, and the MISE, under RQMC or stratification, and we show empirically that in some situations, the MISE can be reduced significantly even in high-dimensional settings.


翻译:我们考虑了估算随机变量X美元密度的问题,可以完全由Monte Carlo(MC)来抽查。我们调查以随机准Monte Carlo(RQMC)或对单元立方体进行分层抽样取代MC的有效性,以减少内核密度估计器的综合差异(IV)和平均集成方差(MISE)的问题。我们从理论上和从经验上表明,RQMC和分层估计器可以大幅削减IV和MISE,在某些情况下甚至比MC更快的趋同率,同时保持偏见不变。我们还表明,通过传统的Koksma-Hlawka型不平等获得的RQMCE差异界限太松,在问题的规模超过几个单位时,无法发挥作用。我们描述了在RQMC或分级下估计IV、良好带宽度和MISE的替代方法,我们从经验上表明,在某些情况下,MISE在高维度环境中也可以大大减少。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
4+阅读 · 2019年5月8日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
4+阅读 · 2019年5月8日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员