A systematic analysis of the cell behavior requires automated approaches for cell segmentation and tracking. While deep learning has been successfully applied for the task of cell segmentation, there are few approaches for simultaneous cell segmentation and tracking using deep learning. Here, we present EmbedTrack, a single convolutional neural network for simultaneous cell segmentation and tracking which predicts easy to interpret embeddings. As embeddings, offsets of cell pixels to their cell center and bandwidths are learned. We benchmark our approach on nine 2D data sets from the Cell Tracking Challenge, where our approach performs on seven out of nine data sets within the top 3 contestants including three top 1 performances. The source code is publicly available at https://git.scc.kit.edu/kit-loe-ge/embedtrack.
翻译:对细胞行为的系统分析要求以自动方式进行细胞分解和跟踪。 虽然在细胞分解任务中已经成功地应用了深层次学习方法, 但同时细胞分解和通过深层学习进行跟踪的方法却很少。 在这里, 我们介绍的是EmbedTrack, 是一个用于同步细胞分解和跟踪的单一的进化神经网络, 用于同步细胞分解和跟踪, 预测嵌入过程容易理解。 作为嵌入, 细胞中心与带宽之间的细胞像素抵消。 我们用细胞追踪挑战中的9个2D数据集来衡量我们的方法, 我们的方法就是在前3名参赛者中的9个数据集中的7个, 包括前1名表演中的3个。 源代码可以在 https://git.scc. kit.edu/kit-loe-ge/embedtract上公开查阅 。