We consider the numerical reconstruction of the spatially dependent conductivity coefficient and the source term in elliptic partial differential equations in a two-dimensional convex polygonal domain, with the homogeneous Dirichlet boundary condition and given interior observations of the solution. Using data assimilation, we derive approximated gradients of the error functional to update the reconstructed coefficients. New $L^2$ error estimates are provided for the spatially discretized reconstructions. Numerical examples are given to illustrate the effectiveness of the method and demonstrate the error estimates. The numerical results also show that the reconstruction is very robust to the errors in specific inputted coefficients.
翻译:本文研究二维凸多边形区域中椭圆型偏微分方程空间依赖型电导系数与源项的数值重构问题,该问题具有齐次狄利克雷边界条件及给定的解的内部观测数据。利用数据同化技术,我们推导了误差泛函的近似梯度以更新重构系数。针对空间离散化重构,本文给出了新的$L^2$误差估计。数值算例验证了该方法的有效性并展示了误差估计的可靠性。数值结果同时表明,重构过程对于特定输入系数的误差具有极强的鲁棒性。