We present a stabilized POD-Galerkin reduced order method (ROM) for a Leray model. For the implementation of the model, we combine a two-step algorithm called Evolve-Filter (EF) with a computationally efficient finite volume method. In both steps of the EF algorithm, velocity and pressure fields are approximated using different POD basis and coefficients. To achieve pressure stabilization, we consider and compare two strategies: the pressure Poisson equation and the supremizer enrichment of the velocity space. We show that the evolve and filtered velocity spaces have to be enriched with the supremizer solutions related to both evolve and filter pressure fields in order to obtain stable and accurate solutions with the supremizer enrichment method. We test our ROM approach on 2D unsteady flow past a cylinder at Reynolds number 0 <= Re <= 100. We find that both stabilization strategies produce comparable errors in the reconstruction of the lift and drag coefficients, with the pressure Poisson equation method being more computationally efficient.
翻译:我们为莱雷模型提出了一个稳定的POD-Galerkin 降序法(ROM) 。 为了实施该模型,我们将名为Evolve-Filter(EF)的两步算法与一种计算效率有限的体积法结合起来。在EF算法的两个步骤中,速度和压力字段都使用不同的POD基数和系数相近。为了实现压力稳定,我们考虑并比较两种战略:压力 Poisson方程式和速度空间的增压增压。我们表明,进化和过滤速度空间必须用与进化和过滤压力字段有关的超增压法来补充,以便获得与增压浓缩法有关的稳定和准确的解决方案。我们用Ronoldz 0 ⁇ re ⁇ ⁇ 100. 我们发现,两种稳定战略在重塑电梯和拖动系数方面都会产生类似的错误,而压力 Poisson 方程式方法在计算上效率更高。