We present SegFormer, a simple, efficient yet powerful semantic segmentation framework which unifies Transformers with lightweight multilayer perception (MLP) decoders. SegFormer has two appealing features: 1) SegFormer comprises a novel hierarchically structured Transformer encoder which outputs multiscale features. It does not need positional encoding, thereby avoiding the interpolation of positional codes which leads to decreased performance when the testing resolution differs from training. 2) SegFormer avoids complex decoders. The proposed MLP decoder aggregates information from different layers, and thus combining both local attention and global attention to render powerful representations. We show that this simple and lightweight design is the key to efficient segmentation on Transformers. We scale our approach up to obtain a series of models from SegFormer-B0 to SegFormer-B5, reaching significantly better performance and efficiency than previous counterparts. For example, SegFormer-B4 achieves 50.3% mIoU on ADE20K with 64M parameters, being 5x smaller and 2.2% better than the previous best method. Our best model, SegFormer-B5, achieves 84.0% mIoU on Cityscapes validation set and shows excellent zero-shot robustness on Cityscapes-C. Code will be released at: github.com/NVlabs/SegFormer.


翻译:我们介绍SegFormer, 是一个简单、高效但强大的语义分解框架, 使具有轻量级多层认知的变异器( MLP) 解码器统一起来。 SegFormer 有两个吸引人的特性:(1) SegFormer 由一个新的分级结构化变异器编码器组成, 产生多尺度的特性。 它不需要定位编码, 从而避免定位码的内插, 从而在测试分辨率不同于培训时导致性能下降。 (2) SegFormer 避免复杂的解码器。 拟议的 MLP 解码器将不同层次的信息集中起来, 从而将当地注意力和全球注意力结合起来, 以进行强有力的表达。 我们显示, 这个简单和轻重的设计是变异器高效分解的关键。 我们扩大我们的方法, 以获得一系列模型, 从SegFormer-B0到SegFormer-B5, 其性能和效率大大高于以前的对应器。 例如, SegFormer- I 将比以前的最佳方法小5ximmer-C- browestalalalalations 将实现B5。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2021年6月1日
专知会员服务
14+阅读 · 2021年5月21日
【CVPR2021】基于端到端预训练的视觉-语言表征学习
专知会员服务
37+阅读 · 2021年4月9日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
已删除
将门创投
5+阅读 · 2019年8月19日
PyTorch语义分割开源库semseg
极市平台
25+阅读 · 2019年6月6日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
UPSNet: A Unified Panoptic Segmentation Network
Arxiv
4+阅读 · 2019年1月12日
Conditional BERT Contextual Augmentation
Arxiv
8+阅读 · 2018年12月17日
Arxiv
7+阅读 · 2018年12月10日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2021年6月1日
专知会员服务
14+阅读 · 2021年5月21日
【CVPR2021】基于端到端预训练的视觉-语言表征学习
专知会员服务
37+阅读 · 2021年4月9日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
已删除
将门创投
5+阅读 · 2019年8月19日
PyTorch语义分割开源库semseg
极市平台
25+阅读 · 2019年6月6日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员