In this work, doubly extended linearized Reed--Solomon codes and triply extended Reed--Solomon codes are generalized. We obtain a general result in which we characterize when a multiply extended code for a general metric attains the Singleton bound. We then use this result to obtain several families of doubly extended and triply extended maximum sum-rank distance (MSRD) codes that include doubly extended linearized Reed--Solomon codes and triply extended Reed--Solomon codes as particular cases. To conclude, we discuss when these codes are one-weight codes.
翻译:在这项工作中,双倍扩展线性Reed-Solomon代码和三倍扩展Reed-Solomon代码被普遍化。我们取得了一个总体结果,我们从中确定了当通用计量的倍增扩展代码达到单一吨约束值时的特性。然后我们利用这一结果获得了多个双倍扩展和三倍扩展最大总和距离(MSRD)代码的家庭,这些代码包括双倍扩展线性Reed-Solomon代码和三倍扩展Reed-Solomon代码作为特定案例。最后,我们讨论这些代码何时是一磅代码。