Recently, out-of-distribution (OOD) generalization has attracted attention to the robustness and generalization ability of deep learning based models, and accordingly, many strategies have been made to address different aspects related to this issue. However, most existing algorithms for OOD generalization are complicated and specifically designed for certain dataset. To alleviate this problem, nicochallenge-2022 provides NICO++, a large-scale dataset with diverse context information. In this paper, based on systematic analysis of different schemes on NICO++ dataset, we propose a simple but effective learning framework via coupling bag of tricks, including multi-objective framework design, data augmentations, training and inference strategies. Our algorithm is memory-efficient and easily-equipped, without complicated modules and does not require for large pre-trained models. It achieves an excellent performance with Top-1 accuracy of 88.16% on public test set and 75.65% on private test set, and ranks 1st in domain generalization task of nicochallenge-2022.
翻译:最近,分配外(OOD)的概括性引起了对深层次学习模型的稳健性和概括性能力的注意,因此,已经制定了许多战略来处理与这一问题有关的不同方面。然而,OOD的概括化现有大多数算法是复杂的,是专门为某些数据集设计的。为了缓解这一问题,nicochallenge-2022提供了具有多种背景信息的大型数据集NICO++。在对NICO++数据集的不同计划进行系统分析的基础上,本文件提出一个简单而有效的学习框架,通过混合各种技巧,包括多目标框架设计、数据增强、培训和推断战略。我们的算法是记忆效率高、设备简便、没有复杂模块、不需要经过预先训练的大型模型。它取得了极好的性能,在公共测试集上达到88.16%的顶端精确度,在私人测试集上达到75.65%的顶端精确度,在对nicollenge2022的域通用任务中排名第一。