A $k$-spanner of a graph $G$ is a sparse subgraph that preserves its shortest path distances up to a multiplicative stretch factor of $k$, and a $k$-emulator is similar but not required to be a subgraph of $G$. A classic theorem by Thorup and Zwick [JACM '05] shows that, despite the extra flexibility available to emulators, the size/stretch tradeoffs for spanners and emulators are equivalent. Our main result is that this equivalence in tradeoffs no longer holds in the commonly-studied setting of graphs with vertex failures. That is: we introduce a natural definition of vertex fault-tolerant emulators, and then we show a three-way tradeoff between size, stretch, and fault-tolerance for these emulators that polynomially surpasses the tradeoff known to be optimal for spanners. We complement our emulator upper bound with a lower bound construction that is essentially tight (within $\log n$ factors of the upper bound) when the stretch is $2k-1$ and $k$ is either a fixed odd integer or $2$. We also show constructions of fault-tolerant emulators with additive error, demonstrating that these also enjoy significantly improved tradeoffs over those available for fault-tolerant additive spanners.
翻译:$G$ 图形的折叠式 $G$ 是一个稀薄的子集, 它保存了最短的路程距离, 直至一个倍增拉伸系数 $k$, 而一个 $k$ 模拟器是相似的, 但不要求是一个 G$ 的子集。 由 Thorup 和 Zwick [JACM'05] 提出的经典理论显示, 尽管模拟器具有额外的灵活性, 但是, 排球器和模拟器的大小/ 利差是等同的。 我们的主要结果是, 这种折价交易的等值不再维持在通常研究的带有顶层故障的图表设置中。 也就是说: 我们引入了顶层过错模拟器的自然定义, 但不要求是 GG$ 。 然后我们展示了这些模拟器的大小、 伸展和错之间的三道交替式, 这些模拟器的成交替性交易量超过了已知的比重。 我们用一个更窄的比重结构结构, 它基本上很紧( $ nble of the log of the the upbredustrate bard destret sultup laful laful )