We present algorithms for computing strongly singular and near-singular surface integrals over curved triangular patches, based on singularity subtraction, the continuation approach, and transplanted Gauss quadrature. We demonstrate the accuracy and robustness of our method for quadratic basis functions and quadratic triangles by integrating it into a boundary element code and solving several scattering problems in 3D. We also give numerical evidence that the utilization of curved boundary elements enhances computational efficiency compared to conventional planar elements.
翻译:暂无翻译