Deep neural network has been ensured as a key technology in the field of many challenging and vigorously researched computer vision tasks. Furthermore, classical ResNet is thought to be a state-of-the-art convolutional neural network (CNN) and was observed to capture features which can have good generalization ability. In this work, we propose a biologically inspired deep residual neural network where the hexagonal convolutions are introduced along the skip connections. The performance of different ResNet variants using square and hexagonal convolution are evaluated with the competitive training strategy mentioned by [1]. We show that the proposed approach advances the baseline image classification accuracy of vanilla ResNet architectures on CIFAR-10 and the same was observed over multiple subsets of the ImageNet 2012 dataset. We observed an average improvement by 1.35% and 0.48% on baseline top-1 accuracies for ImageNet 2012 and CIFAR-10, respectively. The proposed biologically inspired deep residual networks were observed to have improved generalized performance and this could be a potential research direction to improve the discriminative ability of state-of-the-art image classification networks.


翻译:深神经网络作为许多富有挑战性和经过大力研究的计算机愿景任务领域的一项关键技术得到了确保。此外,古典ResNet被认为是最先进的进化神经网络(CNN),并观测到能够捕捉到具有良好概括能力的特征。在这项工作中,我们建议建立一个由生物启发的深残余神经网络,在跳动连接中引入六边形共变。使用正方形和六边形共振的不同ResNet变量的性能与[1]所述的竞争性培训战略一起进行评估。我们表明,拟议方法提高了CIFAR-10号香草ResNet结构的基线图像分类准确度,并在2012年图像网络数据集的多个子集中也观察到了同样的精确度。我们观察到,2012年图像网络和CIFAR-10号的基线顶层-1电弧分别平均提高了1.35%和0.48%。观测到,拟议的由生物启发的深海残余网络提高了普遍性能,这可能是提高状态图像分类网络的区别性能力的潜在研究方向。

0
下载
关闭预览

相关内容

专知会员服务
59+阅读 · 2020年3月19日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员