Communications systems to date are primarily designed with the goal of reliable transfer of digital sequences (bits). Next generation (NextG) communication systems are beginning to explore shifting this design paradigm to reliably executing a given task such as in task-oriented communications. In this paper, wireless signal classification is considered as the task for the NextG Radio Access Network (RAN), where edge devices collect wireless signals for spectrum awareness and communicate with the NextG base station (gNodeB) that needs to identify the signal label. Edge devices may not have sufficient processing power and may not be trusted to perform the signal classification task, whereas the transfer of signals to the gNodeB may not be feasible due to stringent delay, rate, and energy restrictions. Task-oriented communications is considered by jointly training the transmitter, receiver and classifier functionalities as an encoder-decoder pair for the edge device and the gNodeB. This approach improves the accuracy compared to the separated case of signal transfer followed by classification. Adversarial machine learning poses a major security threat to the use of deep learning for task-oriented communications. A major performance loss is shown when backdoor (Trojan) and adversarial (evasion) attacks target the training and test processes of task-oriented communications.


翻译:目前,通讯系统的设计主要是为了可靠地传输数字序列(比特)。下一代(NextG)通讯系统开始探索将这种设计范式转变为可靠执行给定任务的方式,例如在任务导向通讯中。本文将无线信号分类作为下一代无线电接入网(RAN)的任务,其中边缘设备收集无线信号以了解信道状态,并与NextG基站(gNodeB)通信,后者需要识别信号标签。边缘设备可能没有足够的处理能力,也可能无法信任其执行信号分类任务,而将信号传输到gNodeB可能由于严格的延迟、速率和能量限制而不可行。任务导向通讯通过联合训练发射机、接收机和分类器功能作为编码器-解码器对于边缘设备和gNodeB而言。与仅进行单纯的信号传输后进行分类的情况相比,这种方法提高了准确性。对于应用深度学习进行任务导向通讯的情况,对抗机器学习构成了主要的安全威胁。研究表明,当后门(木马)和对抗性攻击(规避)针对任务导向通讯的训练和测试过程时,主要损失的是性能。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
65+阅读 · 2021年8月1日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2020年10月26日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员