Targeting in-memory one-dimensional search keys, we propose a novel DIstribution-driven Learned Index tree (DILI), where a concise and computation-efficient linear regression model is used for each node. An internal node's key range is equally divided by its child nodes such that a key search enjoys perfect model prediction accuracy to find the relevant leaf node. A leaf node uses machine learning models to generate searchable data layout and thus accurately predicts the data record position for a key. To construct DILI, we first build a bottom-up tree with linear regression models according to global and local key distributions. Using the bottom-up tree, we build DILI in a top-down manner, individualizing the fanouts for internal nodes according to local distributions. DILI strikes a good balance between the number of leaf nodes and the height of the tree, two critical factors of key search time. Moreover, we design flexible algorithms for DILI to efficiently insert and delete keys and automatically adjust the tree structure when necessary. Extensive experimental results show that DILI outperforms the state-of-the-art alternatives on different kinds of workloads.


翻译:针对内存中一维搜索关键字,我们提出了一种新颖的DIstribution-driven Learned Index树(DILI),其中每个节点都采用简洁和计算高效的线性回归模型。内部节点的关键字范围由其子节点平均分配,以便键搜索可以完美地模型预测准确地找到相关的叶节点。叶子节点使用机器学习模型生成可搜索的数据布局,因此可以准确地预测关键字的数据记录位置。为了构建DILI,我们首先根据全局和局部关键字分布构建了一个自下而上的带有线性回归模型的树。利用自下而上的树,我们自上而下地构建DILI,根据局部分布个性化调整内部节点的扇出。DILI在关键字搜索时间的两个关键因素——叶节点数和树的高度之间取得了良好的平衡。此外,我们为DILI设计了灵活的算法,以便在需要时高效地插入和删除关键字,并自动调整树结构。大量的实验结果表明,在不同类型的工作负载下,DILI优于现有的最先进的替代方法。

0
下载
关闭预览

相关内容

线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y = w'x+e,e为误差服从均值为0的正态分布。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
16+阅读 · 2022年11月1日
Arxiv
23+阅读 · 2022年2月24日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
19+阅读 · 2020年7月13日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员