Although cancer patients survive years after oncologic therapy, they are plagued with long-lasting or permanent residual symptoms, whose severity, rate of development, and resolution after treatment vary largely between survivors. The analysis and interpretation of symptoms is complicated by their partial co-occurrence, variability across populations and across time, and, in the case of cancers that use radiotherapy, by further symptom dependency on the tumor location and prescribed treatment. We describe THALIS, an environment for visual analysis and knowledge discovery from cancer therapy symptom data, developed in close collaboration with oncology experts. Our approach leverages unsupervised machine learning methodology over cohorts of patients, and, in conjunction with custom visual encodings and interactions, provides context for new patients based on patients with similar diagnostic features and symptom evolution. We evaluate this approach on data collected from a cohort of head and neck cancer patients. Feedback from our clinician collaborators indicates that THALIS supports knowledge discovery beyond the limits of machines or humans alone, and that it serves as a valuable tool in both the clinic and symptom research.


翻译:虽然癌症患者在接受肿瘤治疗多年后仍存活下来,但他们仍受到长期或永久的残余症状的困扰,其严重程度、发育速度和治疗后解析率在幸存者之间差别很大。对症状的分析和解释由于部分共发、不同人口和不同时间的变异,以及就使用放射疗法的癌症而言,由于进一步依赖肿瘤的位置和处方治疗而变得复杂。我们描述THALIS,这是一个通过癌症治疗症状数据进行视觉分析和知识发现的环境,是与肿瘤专家密切合作开发的。我们的方法对病人群采用不受监督的机器学习方法,结合定制的视觉编码和互动,为具有类似诊断特征和症状演变的病人提供了环境。我们评估了从一群头部和颈部癌症患者收集到的数据的方法。我们的临床合作者的反馈表明,TALIS支持超出机器或人类的界限以外的知识发现,并且它作为临床和症状研究的宝贵工具。

0
下载
关闭预览

相关内容

【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
65+阅读 · 2021年8月7日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Nature 一周论文导读 | 2019 年 8 月 22 日
科研圈
4+阅读 · 2019年9月1日
Nature 一周论文导读 | 2019 年 8 月 8 日
科研圈
6+阅读 · 2019年8月18日
Nature 一周论文导读 | 2019 年 6 月 27 日
科研圈
8+阅读 · 2019年7月7日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
35+阅读 · 2021年8月2日
VIP会员
相关VIP内容
相关资讯
Nature 一周论文导读 | 2019 年 8 月 22 日
科研圈
4+阅读 · 2019年9月1日
Nature 一周论文导读 | 2019 年 8 月 8 日
科研圈
6+阅读 · 2019年8月18日
Nature 一周论文导读 | 2019 年 6 月 27 日
科研圈
8+阅读 · 2019年7月7日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员