This commentary regards a recent simulation study conducted by Aouni, Gaudel-Dedieu and Sebastien, evaluating the performance of different versions of matching-adjusted indirect comparison (MAIC) in an anchored scenario with a common comparator. The simulation study uses survival outcomes and the Cox proportional hazards regression as the outcome model. It concludes that using the LASSO for variable selection is preferable to balancing a maximal set of covariates. However, there are no treatment effect modifiers in imbalance in the study. The LASSO is more efficient because it selects a subset of the maximal set of covariates but there are no cross-study imbalances in effect modifiers inducing bias. We highlight the following points: (1) in the anchored setting, MAIC is necessary where there are cross-trial imbalances in effect modifiers; (2) the standard indirect comparison provides greater precision and accuracy than MAIC if there are no effect modifiers in imbalance; (3) while the target estimand of the simulation study is a conditional treatment effect, MAIC targets a marginal or population-average treatment effect; (4) in MAIC, variable selection is a problem of low dimensionality and sparsity-inducing methods like the LASSO may be problematic. Finally, data-driven approaches do not obviate the necessity for subject matter knowledge when selecting effect modifiers. R code is provided in the Appendix to replicate the analyses and illustrate our points.
翻译:本评注涉及Aouni、Gaudel-Dedieu和Sebastien最近进行的模拟研究,该研究评估了不同版本的匹配调整间接比较(MAIC)在与一个共同比较国环绕的假设情景下的业绩。模拟研究将生存结果和Cox比例危害回归作为结果模型使用Cox比例回归作为结果模型。该评注的结论是,使用LASSO进行变量选择,比平衡一组最大变数更为可取。不过,模拟研究中不存在改变不平衡的治疗效果的偏差。LASO之所以效率更高,是因为它选择了一组最大共变数,但在效果改变者中没有交叉研究偏差。我们强调以下各点:(1) 在环绕的设置中,MAIC是必要的;(2) 标准间接比较比MASO更精确和准确,如果没有效果的偏差者不偏差,则比MAIC更准确。尽管模拟研究的目标估计值是有条件的治疗效果,但MAIC针对的是边缘或人口平均的治疗效果;(4) 在MAIC中,变量选择一个低度的偏差是引起偏差的偏差问题的问题,在选择最终的SOLSO方法时,在选择难性分析时,例如难判解性分析。