Protein-protein interaction (PPI) networks consist of the physical and/or functional interactions between the proteins of an organism. Since the biophysical and high-throughput methods used to form PPI networks are expensive, time-consuming, and often contain inaccuracies, the resulting networks are usually incomplete. In order to infer missing interactions in these networks, we propose a novel class of link prediction methods based on continuous-time classical and quantum random walks. In the case of quantum walks, we examine the usage of both the network adjacency and Laplacian matrices for controlling the walk dynamics. We define a score function based on the corresponding transition probabilities and perform tests on four real-world PPI datasets. Our results show that continuous-time classical random walks and quantum walks using the network adjacency matrix can successfully predict missing protein-protein interactions, with performance rivalling the state of the art.
翻译:蛋白质-蛋白质相互作用(PPI)网络由有机体蛋白质之间的物理和/或功能相互作用组成。由于生物物理和高通量方法用于形成PPI网络,成本昂贵、耗时且往往含有不准确性,因此所产生的网络通常不完全。为了推断这些网络中缺少的相互作用,我们建议采用新型链路预测方法,基于连续时间古典和量子随机行走。在量子行走中,我们检查网络对近和拉普拉西亚矩阵的使用情况,以控制行走动态。我们根据相应的过渡概率界定了得分函数,并对四个真实世界的PPI数据集进行了测试。我们的结果显示,利用网络相近矩阵连续的古典随机行走和量行走可以成功地预测缺失的蛋白质-蛋白质相互作用,而其性能与艺术的状态相匹配。