With the emergence of mixed precision capabilities in hardware, iterative refinement schemes for solving linear systems $Ax=b$ have recently been revisited and reanalyzed in the context of three or more precisions. These new analyses show that under certain constraints on condition number, the LU factorization of the matrix can be computed in low precision without affecting the final accuracy. Another promising technique is GMRES-based iterative refinement, which, in contrast to the standard approach, use GMRES preconditioned by the low-precision triangular factors to solve for the approximate solution update in each refinement step. This more accurate solution method extends the range of problems which can be solved with a given combination of precisions. However, in certain settings, GMRES may require too many iterations per refinement step, making it potentially more expensive than simply recomputing the LU factors in a higher precision. Krylov subspace recycling is a well-known technique for reusing information across sequential invocations of a Krylov subspace method on systems with the same or a slowly changing coefficient matrix. In this work, we incorporate the idea of Krylov subspace recycling into a mixed precision GMRES-based iterative refinement solver. The insight is that in each refinement step, we call preconditioned GMRES on a linear system with the same coefficient matrix $A$, with only the right-hand side changing. In this way, the GMRES solves in subsequent refinement steps can be accelerated by recycling information obtained from the first step. We perform extensive numerical experiments on various random dense problems, Toeplitz problems (prolate matrices), and problems from real applications, which confirm the benefits of the recycling approach.


翻译:随着硬件精密能力混杂的出现,最近对解决线性系统的迭代精炼计划进行了重新审视,并在三个或三个以上精准的范畴内重新分析。这些新的分析表明,在某些条件数目的限制下,可以低精确度计算矩阵的LU因子化,而不会影响最终精确度。另一个有希望的技术是基于GMRES的迭代精炼,与标准方法不同,利用低精度三角因素的GMRES,解决每个改进步骤的近似解决方案更新。这一更准确的解决方案方法扩大了可以通过精确度组合解决的一系列问题。然而,在某些环境下,GMRES可能需要在条件数目上进行过多的迭代,从而可能比简单地将LU的因子因子化因素重新精确度计算出更高的精确度。 Krylov 子空间再循环是一种广为人所熟知的方法,用来在每组使用Krylov 子空间方法进行相同的或缓慢变化的系数矩阵更新。在这项工作中,我们把Krylov 子空间循环循环循环循环循环的回收概念概念的概念扩大到一个混合的精细化方法。在每步级的GMRES的精炼方法上,我们只能在不断精确的精细化的根基的精确的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根的根的根的根的根基的根基的根的根基的根基的根基的根基的根基炼。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
15+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
15+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员