This paper summarizes our entries to both subtasks of the first DialDoc shared task which focuses on the agent response prediction task in goal-oriented document-grounded dialogs. The task is split into two subtasks: predicting a span in a document that grounds an agent turn and generating an agent response based on a dialog and grounding document. In the first subtask, we restrict the set of valid spans to the ones defined in the dataset, use a biaffine classifier to model spans, and finally use an ensemble of different models. For the second subtask, we use a cascaded model which grounds the response prediction on the predicted span instead of the full document. With these approaches, we obtain significant improvements in both subtasks compared to the baseline.
翻译:本文总结了我们在第一个 DialDoc 共享任务的两个子任务中的条目, 该子任务的重点是目标导向文档对话框中的代理响应预测任务。 任务分为两个子任务 : 预测一个代理转弯的文档中的空格, 并产生基于对话框和定位文档的代理响应。 在第一个子任务中, 我们限制数据集中定义的有效空格, 使用一个对称分级分类器进行模型, 最后使用一个不同模型的组合。 对于第二个子任务, 我们使用一个级联模型, 将响应预测建立在预测的跨度而不是完整文档上。 通过这些方法, 我们得到了两个子任务相对于基线的显著改进 。