Point processes have been dominant in modeling the evolution of seismicity for decades, with the Epidemic Type Aftershock Sequence (ETAS) model being most popular. Recent advances in machine learning have constructed highly flexible point process models using neural networks to improve upon existing parametric models. We investigate whether these flexible point process models can be applied to short-term seismicity forecasting by extending an existing temporal neural model to the magnitude domain and we show how this model can forecast earthquakes above a target magnitude threshold. We first demonstrate that the neural model can fit synthetic ETAS data, however, requiring less computational time because it is not dependent on the full history of the sequence. By artificially emulating short-term aftershock incompleteness in the synthetic dataset, we find that the neural model outperforms ETAS. Using a new enhanced catalog from the 2016-2017 Central Apennines earthquake sequence, we investigate the predictive skill of ETAS and the neural model with respect to the lowest input magnitude. Constructing multiple forecasting experiments using the Visso, Norcia and Campotosto earthquakes to partition training and testing data, we target M3+ events. We find both models perform similarly at previously explored thresholds (e.g., above M3), but lowering the threshold to M1.2 reduces the performance of ETAS unlike the neural model. We argue that some of these gains are due to the neural model's ability to handle incomplete data. The robustness to missing data and speed to train the neural model present it as an encouraging competitor in earthquake forecasting.
翻译:数十年来,在模拟地震演变模型中,各点进程一直占据主导地位,震后后序列(ETAS)模型模型最为流行。最近机器学习的进展利用神经网络建立了高度灵活的点点进程模型,以改进现有的参数模型。我们调查这些灵活点进程模型是否可以通过将现有时间神经模型扩展至规模域来应用到短期地震预报,我们展示了这一模型如何预测地震超过目标级阈值。我们首先证明神经模型能够适应合成的 ETASS 系统(ETAS)数据,但需要的计算时间较少,因为它不取决于序列的整个历史。通过人为地模拟短期点点点点进程模型,利用合成数据集的不完全性模型来改进现有的神经系统。我们发现神经模型和神经模型的预测技能,但利用Visso、Norcia和Campotos的模型来进行多次预测实验,以进行分区模型的完整历史史。通过人工模拟模拟,我们发现神经系统模型比ETAS的短期模型。我们的目标是利用2016年中央地震测测测测测测的模型,我们把这些数据比到目前的最低输入量。