In this paper, we develop a new type of accelerated algorithms to solve some classes of maximally monotone equations as well as monotone inclusions. Instead of using Nesterov's accelerating approach, our methods rely on a so-called Halpern-type fixed-point iteration in [32], and recently exploited by a number of researchers, including [24, 70]. Firstly, we derive a new variant of the anchored extra-gradient scheme in [70] based on Popov's past extra-gradient method to solve a maximally monotone equation $G(x) = 0$. We show that our method achieves the same $\mathcal{O}(1/k)$ convergence rate (up to a constant factor) as in the anchored extra-gradient algorithm on the operator norm $\Vert G(x_k)\Vert$, , but requires only one evaluation of $G$ at each iteration, where $k$ is the iteration counter. Next, we develop two splitting algorithms to approximate a zero point of the sum of two maximally monotone operators. The first algorithm originates from the anchored extra-gradient method combining with a splitting technique, while the second one is its Popov's variant which can reduce the per-iteration complexity. Both algorithms appear to be new and can be viewed as accelerated variants of the Douglas-Rachford (DR) splitting method. They both achieve $\mathcal{O}(1/k)$ rates on the norm $\Vert G_{\gamma}(x_k)\Vert$ of the forward-backward residual operator $G_{\gamma}(\cdot)$ associated with the problem. We also propose a new accelerated Douglas-Rachford splitting scheme for solving this problem which achieves $\mathcal{O}(1/k)$ convergence rate on $\Vert G_{\gamma}(x_k)\Vert$ under only maximally monotone assumptions. Finally, we specify our first algorithm to solve convex-concave minimax problems and apply our accelerated DR scheme to derive a new variant of the alternating direction method of multipliers (ADMM).


翻译:在本文中, 我们开发了一种新型加速算法, 以解决一些最高级的 单调方程式 { 单调方程式 以及单调方程式 。 我们显示, 我们的方法不是使用 Nesterov 的加速法, 而是依靠所谓的 Halpern 型固定点迭代法 [32], 最近被一些研究人员所利用, 包括 [24, 70] 。 首先, 我们根据 Popov 以往的超升级方法, 解决某种最高级的单调方程式 $(x) = 0美元 。 我们显示, 我们的方法实现了相同的加速法 $\ mathalal 方向 (1k) 的趋近率( 直至一个恒定系数 ) 运行者 $\ Vert G(x_k)\ Vert 。 首先, 我们的首次对 美元 直压方程式进行一次评价, 也就是在直立方程式下, 直立方程式的平面法 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2022年2月9日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员