In this paper, the line spectral estimation (LSE) problem is studied from one-bit quantized samples where variational line spectral estimation (VALSE) combined expectation propagation (EP) VALSE-EP method is proposed. Since the original measurements are heavily quantized, performing the off-grid frequency estimation is very challenging. Referring to the expectation propagation (EP) principle, this quantized model is decomposed as two modules, one is the componentwise minimum mean square error (MMSE) module, the other is the standard linear model where the variational line spectrum estimation (VALSE) algorithm can be performed. The VALSE-EP algorithm iterates between the two modules in a turbo manner. In addition, this algorithm can be easily extended to solve the LSE with the multiple measurement vectors (MMVs). Finally, numerical results demonstrate the effectiveness of the proposed VALSE-EP method.


翻译:在本文中,线光谱估计(LSE)问题是从一位数的样本中研究的,这些样本建议采用变分线光谱估计(VALSE)综合预期传播(EP)VALSE-EP方法。由于最初的测量是大量量化的,因此进行离网频率估计非常具有挑战性。关于预期传播(EP)原则,这个四分化模型分解成两个模块,一个是组件最小平均差(MMSE)模块,另一个是标准线性模型,可以进行变分线谱谱估计(VALSE)算法。VALSE-EP算法以涡轮方式在两个模块之间进行迭代。此外,这一算法可以很容易地扩展,以便用多种测量矢量(MVs)解决LSE。最后,数字结果显示了拟议的VESE-EP方法的有效性。

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡一分钟】无参相机标定
泡泡机器人SLAM
4+阅读 · 2018年11月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年10月11日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关VIP内容
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡一分钟】无参相机标定
泡泡机器人SLAM
4+阅读 · 2018年11月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员