Facial Expression Recognition is a vital research topic in most fields ranging from artificial intelligence and gaming to Human-Computer Interaction (HCI) and Psychology. This paper proposes a hybrid model for Facial Expression recognition, which comprises a Deep Convolutional Neural Network (DCNN) and Haar Cascade deep learning architectures. The objective is to classify real-time and digital facial images into one of the seven facial emotion categories considered. The DCNN employed in this research has more convolutional layers, ReLU Activation functions, and multiple kernels to enhance filtering depth and facial feature extraction. In addition, a haar cascade model was also mutually used to detect facial features in real-time images and video frames. Grayscale images from the Kaggle repository (FER-2013) and then exploited Graphics Processing Unit (GPU) computation to expedite the training and validation process. Pre-processing and data augmentation techniques are applied to improve training efficiency and classification performance. The experimental results show a significantly improved classification performance compared to state-of-the-art (SoTA) experiments and research. Also, compared to other conventional models, this paper validates that the proposed architecture is superior in classification performance with an improvement of up to 6%, totaling up to 70% accuracy, and with less execution time of 2098.8s.


翻译:从人工智能和赌博到人类-计算机互动(HCI)和心理学等大多数领域都有一个至关重要的研究课题。本文提出了一种复合法表化识别模式,其中包括深演神经网络(DCNN)和Haar Cascade深层学习结构。目的是将实时和数字面部图像分类为所考虑的七个面部情感类别之一。在这项研究中使用的DCNN具有更多的进化层、ReLU激活功能和多个内核,以加强过滤深度和面部特征提取。此外,还同时使用一个haar级联模型来探测实时图像和视频框架中的面部特征。来自Kagle存储处(FER-2013)的灰度图像,然后利用图形处理股(GPU)计算加快培训和验证进程。预处理和数据增强技术用于提高培训效率和分类工作绩效。实验结果显示,与最新技术(SoTA)实验和研究相比,分类工作业绩显著改进。此外,与其他常规模型相比,这一级级级级模型比起来,该级级图像升级为70 %。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员