An iterative randomness extraction algorithm which generalized the Von Neumann's extraction algorithm is detailed, analyzed and implemented in standard C++. Given a sequence of independently and identically distributed biased Bernoulli random variables, to extract randomness from the aforementioned sequence pertains to produce a new sequence of independently and identically distributed unbiased Bernoulli random variables. The iterative construction here is inspired from the work of Stout and Warren 1984 who modified appropriately the tree of probabilities produced by recursively repeating the Von Neumann's extraction algorithm. The correctness of the iterative algorithm is proven. The number of biased Bernoulli random variables needed to produce one unbiased instance is the complexity of interest. The complexity depends on the bias of the source. The expected complexity converges toward 3.10220648... when the bias tends to 0 and diverges when the bias tends to 1/2. In addition to the expected complexity, some other results that concern the limiting asymptotic construction, and that seem unnoticed in the literature so far, are proven.


翻译:将 Von Neumann 的抽取算法普遍化的迭代随机抽取算法在标准 C++ 中详细分析、分析和实施。 根据独立且分布完全的偏差伯努利随机变量序列,从上述序列中抽取随机性是为了产生一个独立且分布完全的不带偏见的伯努利随机变量新序列。 这里的迭代构造来自Stout 和 Warren 1984 的作品, 他们适当修改了反复重复 Von Neumann 提取算法产生的概率树。 迭代算法的正确性得到了证明。 生成一个不偏差实例所需的偏差伯努利随机变量数量是利益的复杂性。 复杂性取决于源的偏向性。 当偏差趋向于 1/2 时偏差时, 偏差会达到 0 和 差异 。 除了预期的复杂性外, 其他一些结果也得到了证明, 这些结果涉及到限制随机构造, 而且到目前为止在文献中似乎不被注意。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月8日
Arxiv
0+阅读 · 2021年3月5日
Arxiv
0+阅读 · 2021年3月4日
Arxiv
0+阅读 · 2021年3月4日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员