We discuss causal mediation analyses for survival data and propose a new approach based on the additive hazards model. The emphasis is on a dynamic point of view, that is, understanding how the direct and indirect effects develop over time. Hence, importantly, we allow for a time varying mediator. To define direct and indirect effects in such a longitudinal survival setting we take an interventional approach (Didelez (2018)) where treatment is separated into one aspect affecting the mediator and a different aspect affecting survival. In general, this leads to a version of the non-parametric g-formula (Robins (1986)). In the present paper, we demonstrate that combining the g-formula with the additive hazards model and a sequential linear model for the mediator process results in simple and interpretable expressions for direct and indirect effects in terms of relative survival as well as cumulative hazards. Our results generalise and formalise the method of dynamic path analysis (Fosen et al. (2006), Strohmaier et al. (2015)). An application to data from a clinical trial on blood pressure medication is given.
翻译:我们讨论关于生存数据的因果调解分析,并根据添加危害模型提出新的方法。强调的是动态观点,即了解直接和间接影响如何随时间推移而演变。因此,重要的是,我们允许一个有时间差异的调解人。为了界定这种纵向生存环境中的直接和间接影响,我们采取干预方法(Didelez (2018年)),将治疗分为影响调解人的一个方面和影响生存的不同方面。总体而言,这导致非参数g-形态的版本(Robins (1986年) )。在本文件中,我们证明,将g-形态与添加危害模型和调解过程的顺序线性模型相结合,就相对生存和累积危害而言,可以简单和解释直接和间接影响的表达。我们的结果是概括和正式地规定动态路径分析方法(Fosen等人(2006年),Strohmaier等人(2015年) )。我们用血液压力药物临床试验的数据进行了应用。