This paper introduces a multivariate spatiotemporal autoregressive conditional heteroscedasticity (ARCH) model based on a vec-representation. The model includes instantaneous spatial autoregressive spill-over effects in the conditional variance, as they are usually present in spatial econometric applications. Furthermore, spatial and temporal cross-variable effects are explicitly modelled. We transform the model to a multivariate spatiotemporal autoregressive model using a log-squared transformation and derive a consistent quasi-maximum-likelihood estimator (QMLE). For finite samples and different error distributions, the performance of the QMLE is analysed in a series of Monte-Carlo simulations. In addition, we illustrate the practical usage of the new model with a real-world example. We analyse the monthly real-estate price returns for three different property types in Berlin from 2002 to 2014. We find weak (instantaneous) spatial interactions, while the temporal autoregressive structure in the market risks is of higher importance. Interactions between the different property types only occur in the temporally lagged variables. Thus, we see mainly temporal volatility clusters and weak spatial volatility spill-overs.
翻译:本文引入了一个基于 Vec 表示式的多变量空间时空自动递减性(ARCH) 模型。 该模型包括有条件差异中的瞬时空间自动递减溢出效应,因为这些效应通常存在于空间计量应用中。 此外,空间和时间跨变量效应是明确的模型。 我们使用对数对称转换将模型转换成多变量空间自动递减模型,并得出一个一致的准最大类似误差估测器(QMLE)。对于有限的样本和不同的误差分布,在一系列蒙特-卡洛模拟中分析QMLE的性能。此外,我们用一个实体世界实例来说明新模型的实际使用情况。我们分析了2002年至2014年柏林三种不同属性的月地产价格回报。我们发现(即时)空间互动能力薄弱,而市场风险中的时间性自动递增结构则更为重要。不同属性类型之间的相互作用仅发生在时滞波动性小的星系中。 因此,我们可以看到空间波动性最弱的变量。