Wearable data is a rich source of information that can provide deeper understanding of links between human behaviours and human health. Existing modelling approaches use wearable data summarized at subject level via scalar summaries using regression techniques, temporal (time-of-day) curves using functional data analysis (FDA), and distributions using distributional data analysis (DDA). We propose to capture temporally local distributional information in wearable data using subject-specific time-by-distribution (TD) data objects. Specifically, we propose scalar on time-by-distribution regression (SOTDR) to model associations between scalar response of interest such as health outcomes or disease status and TD predictors. We show that TD data objects can be parsimoniously represented via a collection of time-varying L-moments that capture distributional changes over the time-of-day. The proposed method is applied to the accelerometry study of mild Alzheimer's disease (AD). Mild AD is found to be significantly associated with reduced maximal level of physical activity, particularly during morning hours. It is also demonstrated that TD predictors attain much stronger associations with clinical cognitive scales of attention, verbal memory, and executive function when compared to predictors summarized via scalar total activity counts, temporal functional curves, and quantile functions. Taken together, the present results suggest that the SOTDR analysis provides novel insights into cognitive function and AD.


翻译:现有的建模方法使用利用回归技术、使用功能数据分析(FDA)和分布式数据分析(DDA)的分布式分布式分布式分析(DDA)在主题层次上总结的可磨损数据。我们提议使用按主题、按时间分列(TD)数据对象在可磨损数据中捕捉时间上的当地分配信息。具体地说,我们提议按时间逐个分配回归(SOTDR)向健康结果或疾病状况和TD预测器等有兴趣的量级反应之间的比例级反应(SOTDR)向模型级反应之间的关联进行缩放。我们表明,TD数据对象可以通过收集时间变化L-moment(FADA)的分布式分析(FDDA)和分布式分布式数据分析(DAD)。我们发现,按时间逐个主题逐个分配(SODD)数据对象向健康结果或疾病状况和TD预测器状态预测器等模型之间的比例联系会大大加强,通过收集时间分布式的L-moveyal 动作,通过分析、口头预测性计算结果,从而显示可测测测算出实际活动的总联系。

0
下载
关闭预览

相关内容

【WWW2021】张量时间序列网络
专知会员服务
43+阅读 · 2021年4月20日
专知会员服务
108+阅读 · 2020年10月27日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
3+阅读 · 2018年4月5日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员