This paper explores formalizing Geometric (or Clifford) algebras into the Lean 3 theorem prover, building upon the substantial body of work that is the Lean mathematics library, mathlib. As we use Lean source code to demonstrate many of our ideas, we include a brief introduction to the Lean language targeted at a reader with no prior experience with Lean or theorem provers in general. We formalize the multivectors as the quotient of the tensor algebra by a suitable relation, which provides the ring structure automatically, then go on to establish the universal property of the Clifford algebra. We show that this is quite different to the approach taken by existing formalizations of Geometric algebra in other theorem provers; most notably, our approach does not require a choice of basis. We go on to show how operations and structure such as involutions, versors, and the $\mathbb{Z}_2$-grading can be defined using the universal property alone, and how to recover an induction principle from the universal property suitable for proving statements about these definitions. We outline the steps needed to formalize the wedge product and $\mathbb{N}$-grading, and some of the gaps in mathlib that currently make this challenging.


翻译:本文探索将几何值( 或克里夫多德) 代数正规化为利昂 3 理论证明, 以利昂数学图书馆( Mathlib ) 的大量工作为基础。 我们使用利昂源代码来展示我们的许多想法, 我们用利昂源代码来简要介绍利昂语言, 特别是针对一个在利昂或理论证明者方面没有经验的读者。 我们通过一种合适的关系, 将多元代数的商数( 或克里夫代数) 正式化为高温代数的商数, 自动提供环形结构, 然后继续建立克利福德代数的通用属性。 我们表明这与在其它理论验证中现有的地基代数代数正规化方法非常不同; 最明显的是, 我们的方法并不需要选择基础。 我们继续展示如何使用通用属性来界定多维值的操作和结构, 以及 $mathbb2 =2 递增值, 如何从通用属性中恢复一项上位原则, 以适合证明这些定义的通用值。 我们勾勒格 和数学需要的步骤来正式化。

0
下载
关闭预览

相关内容

迄今为止,产品设计师最友好的交互动画软件。

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
77+阅读 · 2021年3月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
102+阅读 · 2020年7月16日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月1日
Arxiv
0+阅读 · 2021年11月30日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
24+阅读 · 2021年3月4日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员